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Abstract: We report the reconstruction of the mass component spectra of cosmic rays
(protons, helium, carbon, silicon and iron) and their mean mass composition, at energies from
1.4 to 100PeV. The results are derived from the archival data of the extensive air shower
experiment KACADE. We use a novel machine learning technique developed specically for
this reconstruction, and post-LHC hadronic interaction models: QGJet-II.04, EPO-LHC
and ibyll 2.3c. We have found an excess of the proton component and a decit of intermediate
and heavy nuclei components compared to the original KACADE results. The spectra of
protons and helium show a knee-like behavior at ∼ 4▷4PeV and ∼ 11PeV, with signicances
5▷2σ and 3▷9σ, respectively. The spectrum of the iron component has a hint (2▷4σ) of a
hardening at ∼ 4▷5PeV, which can be interpreted as a counterpart of a hardening in the
proton spectrum at 166TeV, recently reported by the GRAPE-3 experiment. The systematic
uncertainties of our analysis were found to be smaller than those of the original KACADE,
as well as those of IceTop and TALE experiments, over the most part of the energy range
studied. We also estimated separately the uncertainty related to the dierence between the
three mentioned hadronic interaction models. We also compute a mean logarithm mass
of CR ux as a function of energy. It is in agreement with the results of IceTop, TALE
and LHAAO within the uncertainties.
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1 Introduction

Measurements of the cosmic-ray energy spectrum and the individual mass component spectra
in the 1 to 100PeV energy range provide important information for understanding the
sources, acceleration, and propagation mechanisms of galactic cosmic rays (CRs). They
are also essential in searching for the energy region where the transition from galactic to
extragalactic CRs takes place. In particular, many mechanisms of the CR acceleration
naturally predict that the maximum energy achievable by cosmic rays is proportional to
their charge. This should lead to a sequence of steepenings (“knees”) in the observed spectra
of CR mass components, that are coinciding with the maxima of their injected spectra in
galactic sources [1–3]. Alternatively, such a behavior of the observed individual spectra can
occur due to energy dependent diusive escape of the CRs from the Galaxy [4]. Importantly,
in both of these models, the features of the observed spectra depend on magnetic rigidity
of the respective particles, i. e. the energy of the knee in the spectrum of each component
is proportional to the charge of this component.

A rst indication that such a behavior of CR component spectra is indeed taking place
was found by the KACADE experiment [5]. Although the increase of the mean mass of the
CR ux with energy was supported by other experiments in general, there is a controversy
about the particular proportion of individual mass components in the ux depending on
energy. The study of CRs with energies above ∼ 1PeV is complicated, as one can only observe
it indirectly through extensive air showers (EA) of secondary particles that they initiate in
the Earth’s atmosphere. Therefore, the results of various experiments are subject to a number
of systematic uncertainties accompanying the reconstruction of primary particle features from
the EA observables. In addition to the original KACADE mass component results [5–7] we
can mention studies of other experiments: CAA-BLANCA [8], Tibet Aγ [9], KACADE-
Grande [7, 10], Tunka-133 [11], TAIGA [12], IceTop [13], and TALE [14], in the energy range
of interest.1 There is also another study based on the public KACADE data [16].

1There is also a study of LHAASO experiment [15], that appeared when the present paper was already in
the review process.
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In this research, we present mass component spectra reconstruction with machine learning
methods using archival data from the KACADE experiment [17], provided by the KACADE
Cosmic Ray Data Centre (KCDC) [18]. In the original KACADE analyses [5–7, 19], the
method of two-dimensional unfolding was used, in which a distribution of events over the
reconstructed numbers of electrons and muons was converted into a distribution over the type
and energy of the primary particle. In this research, we use a dierent approach to reanalyze
the original data of the KACADE experiment and to re-derive the CR mass component
spectra from it. This approach combines the event-by-event classication of the primary
particle type with machine learning [20–22] and two separate unfolding procedures for the
correction of the reconstructed primary particle type and energy [22]. A detailed description
of our methods and their uncertainties was given in ref. [22]. The additional feature of the
present analysis is the estimation of an independent systematic uncertainty (called theoretical
uncertainty from now on) associated with the dierence between three modern hadronic
interaction models (QGJet-II.04 [23], EPO-LHC [24] and ibyll 2.3c [25]). All the Monte
Carlo simulations used in this study are also provided by the KCDC.

The paper is organized as follows: in section 2, we briey describe the data and Monte
Carlo (MC) that we are using. ection 3 outlines the main details of our analysis and also
describes some features that were not presented in our methodological paper [22]. Namely, we
discuss the estimation of the theoretical uncertainty related to hadronic interaction models
and the method of the mean logarithmic mass reconstruction. In section 4, we show the
main results of this study: the reconstructed spectra of individual mass components and
the mean logarithmic mass. We also compare these results with other experiments. The
discussion and conclusion are presented in section 5.

2 Experiment, data and Monte Carlo

In this study, we analyze the archival data from the KACADE experiment using the machine
learning methods developed specically for this task. The KACADE air shower experiment
was operated from 1996 to 2013 at the KIT Campus in Karlsruhe, Germany (49▷1◦ north,
8▷4◦ east at 110m a.s.l). This experiment studied extensive air showers in the primary energy
range from ∼ 500TeV to 100PeV. The experiment collected data from dierent setups,
but in this research, we use the data from the main KACADE array only. This array
was composed of 252 scintillator detectors placed in a rectangular grid covering an area of
200× 200m2. The outer 192 detectors contained a shielding layer to detect electromagnetic
and muon-dominated EA parts separately.

The experimental and Monte Carlo data we are using in this study were provided by
the KCDC service [18]. Each event includes time-integrated deposits of electromagnetic
and muon EA components from the KACADE array stations, as well as reconstructed
features: primary energy (E), zenith angle (θ), azimuthal angle (ϕ), shower core position (x,
y), number of electrons (Ne) and muons (Nµ), and shower age (s). Details of description of
these parameters can be found in refs. [22, 26]. The values Ne, Nµ, and s are determined
by tting the lateral distribution function of the particle densities with the modied NKG
function [26]. E is reconstructed with the standard KACADE algorithms by taking into
account both Ne and Nµ corrected for atmospheric attenuation depending on θ, see ref. [26]
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for more details. The resolution of E is around 11% in terms of the decimal logarithm
of the ratio of the simulated to the reconstructed energies for MC events based on the
QGJet-II.04 hadronic interaction model, which passed the quality cuts in the studied energy
range (see below).2

The full eciency of the trigger and reconstruction is reached at E > 1015 eV. We use
the quality cuts recommended by KACADE [5]: θ < 18◦,


x2 + y2 < 91 m, log10Ne > 4▷8,

log10Nµ > 3▷6, and the cut on the shower age set by KCDC: 0▷2 < s < 1▷48 [26], which is
stricter than the original one (0▷2 < s < 2▷1). We also impose the additional cut on the
reconstructed event energy E > 1015▷15 eV to ensure the stability of the unfolding procedure.

Overall, we have ∼ 3▷5 · 106 experimental events in the studied energy range that passed
the quality cuts. The entire experimental dataset was divided into the so-called “blind” and
“unblind” parts in an 80:20 ratio by random partitioning. The “unblind” part was used to
check the correctness of the methods applied in our study [22]. The results for the “blind”
part are disclosed in this paper. Also, we use a number of MC datasets provided by KCDC,
that were simulated with CORIKA [28] and accounted for the detector response for three
dierent post-LHC hadronic interaction models: QGJet-II.04 [23], EPO-LHC [24], and
ibyll 2.3c [25]. For low-energy hadronic interactions (E < 200GeV), the FLUKA [29] model
has been used. We have a total of ∼ 1▷3 · 105, 6▷7 · 104, and 6▷8 · 104 events that have passed
the quality cuts in the studied energy range for the QGJet-II.04, EPO-LHC and ibyll 2.3c
models, respectively. These MC sets include simulations for ve primary particle types:
protons (p), helium (He), carbon (C ), silicon (Si), and iron (Fe). In ref. [22], we used MC
based on the QGJet-II.04 hadronic interaction model as a baseline, in line with the original
KACADE research [7] based on the QGJet-II.02 model [27]. The results for EPO-LHC
and ibyll 2.3c are used for a calculation of the theoretical uncertainty.

3 Method and uncertainties

All details of our methods and their application are available in our methodological paper [22].
In summary, we built a number of machine learning models to classify primary CRs into
ve groups: p, He, C, Si and Fe, on an event-by-event basis. Namely, a random forest (RF)
classier [30], a convolutional neural network (CNN) inspired by the LeNet-5 architecture [31],
a multi-layer perceptron, and EcientNetv2 [32] were constructed. These models were
implemented using PyTorch [33], TensorFlow [34] and cikit-learn [35] packages. The
performance of these models was compared using their confusion matrices. This matrix
represents the fraction of particles of each type that the given model classies as this type (i.e.,
correctly) and all other types (i.e., incorrectly). The performance of the dierent classiers
was found to be almost similar; we selected the CNN for further use because of its robustness
demonstrated in various other tests performed in our methodological paper [22]. The CNN
uses electromagnetic and muon deposits, θ, Ne, Nµ and s as input parameters. An example
of the CNN confusion matrix for dierent energy intervals is shown in gure 1.

In ref. [22], we used the CNN to reconstruct the mass component spectra of CRs in
the “unblind” part of the experimental data. We enhanced the quality of mass component

2The dierence from the energy resolution shown in our methodological paper [22] is due to usage of
QGSJet-II.04 hadronic model instead of QGSJet-II.02 model [27].
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Figure 1. Confusion matrices of the CNN for the dierent reconstructed energy intervals. The neural
network is trained and tested using the QGJet-II.04 hadronic interaction model.

spectra reconstruction by performing the unfolding of our results with response matrices
(that are transposed confusion matrices) derived from the MC simulations. We sequentially
unfolded the primary energy and primary particle type using the Bayesian iterative unfolding
procedure [36] with the pyunfold [37] Python package. In ref. [22], all uncertainties related to
particle type and energy reconstruction, as well as uncertainties of the unfolding procedure,
were estimated using the MC set with the QGJet-II.02 hadronic interaction model and the
“unblind” data set. In what follows, we call these uncertainties “basic” ones. The results
were shown to have better accuracy than that of the original KACADE analysis [7] (see,
e.g. gure 20 of ref. [22]).

In the present study, we apply the same analysis pipeline to the undisclosed portion
(“blind” part) of the experimental data. We perform the full unfolding and re-compute
all the “basic” uncertainties using the MC set based on the QGJet-II.04 hadronic model
and the “blind” data set. Namely, the computed uncertainties are: eect of “missing”
detectors in experimental data (5–18%, with respect to the reconstructed CR ux value),
limited size of the MC set (8–25%), energy resolution for dierent MC mixtures (13–16%),
spectral index in the MC set (up to 4%). Another set of systematic biases comes from
sequential energy and particle type unfoldings (up to 8%) and the unfolding procedure
itself (1–24%). All the uncertainty estimates shown in brackets above have been calculated
as an average overall mass component for the studied energy range after the full unfolding.
The estimates for two other hadronic interaction models considered in this study are almost
similar (excluding outliers for EPO-LHC, see below). We calculated the total “basic”
systematic uncertainty as the square root of the sum of the squares of the uncertainties and
biases described above, conservatively considering that they are independent. Compared
to our analysis in ref. [22], we have applied a correction for detection eciency to the
computations. For example, for QGJet-II.04 hadronic model, the correction in the rst
energy bin (6▷15 < log10 (E◁GeV) < 6▷2425) varies from 6% for protons to 34% for iron;
in the second bin (6▷2425 < log10 (E◁GeV) < 6▷335), it varies from 1% to 8%, respectively,
while in higher bins full eciency is reached and no correction is applied. Therefore, the
accuracy of the spectra reconstruction in the two lower energy bins was improved, while the
respective uncertainty vanished in the present analysis.
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Theoretical uncertainty. To consider uncertainties associated with a dierence between
hadronic interaction models, we rst perform the unfolding procedures for each model and
compute the respective uncertainty bands of “basic” systematics. This implies unfolding
with the response matrices derived from the corresponding MC sets for our CNN. We set
the results obtained for the QGJet-II.04 model as our baseline, following the usage of the
previous version of this model (QGJet-II.02) in the original KACADE mass composition
study [7]. For each mass component spectrum in each energy bin, we estimate the theoretical
uncertainty as a range between the minimum and the maximum edges of the “basic” systematic
uncertainty bands among all the hadronic models used. In any case, we should note that all
the considered hadronic models may be incorrect, so that true values of the mass component’s
uxes may not be covered even by the theoretical uncertainties considered.

Mean logarithmic mass representation. The results of two other modern experiments,
IceTop [13] and TALE [14], on the CR mass composition were presented in the form of
⟨lnA⟩ depending on the energy. Therefore, to make a reasonable comparison, we compute
this quantity in the present paper too. We derive ⟨lnA⟩ by taking the weighted sum of the
uxes of the mass component spectra in each energy bin. To estimate the “basic” systematic
uncertainty for ⟨lnA⟩, we rst calculate separately each uncertainty contribution of those
discussed above. The calculation is performed using the propagation of uncertainty method.
The contributions of the unfolding biases are calculated as the direct weighted sum of the
biases. For the “basic” systematic uncertainty, we combine all the contributions in quadrature,
considering them to be uncorrelated. To account for the theoretical uncertainty of the hadronic
models, we use the same method as for the spectra of individual mass components, namely
we calculate ⟨lnA⟩ for each hadronic interaction model separately, including the “basic”
systematic uncertainties. We take the result for the QGJet-II.04 model as a baseline and
estimate the theoretical uncertainty as a range between the lowest and highest edges of the
“basic” uncertainty bands among all the hadronic models used.

4 Analysis and results

In this section, we show the energy spectra for elementary groups of cosmic rays obtained
with the “blind” part of the KACADE experimental data. The spectra reconstructed using
QGJet-II.04 hadronic interaction model are presented in gure 2. Here, we include all the
“basic” uncertainties described in section 3, they have values in a range (20− 45)% depending
on the energy, when averaged over all mass components.

The comparison between the original KACADE mass component spectra (based on
the QGJet-II.02 hadronic model) and our nal CNN results (based on the QGJet-II.04
hadronic model) is shown in gure 3.3 We should note, that the dierences in the spectra of
each component are larger than the respective dierences estimated in our methodological

3This gure resembles the gure 20 from our methodological paper [22], but they are quite dierent. Here
for our CNN results, we use the data from the “blind” part of the experimental dataset and QGSJet-II.04
hadronic model as a baseline, instead of “unblind” dataset and QGSJet-II.02 model used in that study. Also,
the theoretical uncertainty of hadronic models was not estimated in our methodological study. The results of
the original KASCADE experiment are the same in both gures.

– 5 –



J
C
A
P
0
5
(
2
0
2
4
)
1
2
5

Figure 2. Mass component spectra reconstructed with our CNN method for the “blind” part of the
experimental data using QGJet-II.04 hadronic interaction model and the full unfolding procedure.
Error bars display the statistical uncertainties, while bands represent the “basic” systematic uncer-
tainties.

paper [22], where both analysis methods use one and the same QGJet-II.02 hadronic model.
For our results we also show separately the estimation of the theoretical uncertainties related
to hadronic models, while there is no such an estimation for the original KACADE results.
We estimate the magnitude of the theoretical uncertainties, dening it as a relative dierence
between the central values of the ux and the most distant edge of the theoretical uncertainty
bands (unlike “basic” systematics, the theoretical uncertainty band is non-symmetric). We
get a value in a range of (70 − 150)%, depending on the energy, when averaged over all
mass components.

One can see that within the uncertainties, the all-particle ux is in agreement between
the original KACADE and our CNN results. The statistical uncertainties of the KACADE
spectra exceed those of the CNN spectra because the experimental dataset provided by KCDC,
which we use in this study, is larger by a factor of about eleven compared to the dataset
used in the KACADE study [7] (not all of the experimental data, that are now available via
KCDC, was used in the original research). At the same time, the uncertainties are dominated
by systematic ones for almost all mass components at all energies for both analyses. As one
can see, the “basic” systematic uncertainties of the CNN analysis are smaller than those of
the original KACADE analysis, both for individual components and for all-particle spectra,
which is an achievement of our method, while the theoretical uncertainties of the CNN are
generally comparable to them. Also, our estimation of the theoretical uncertainties yields
outliers at several energies (for He and Fe components). This eect is entirely due to the
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Figure 3. Comparison of the individual mass component spectra and all-particle spectra (right
bottom) of the original KACADE analysis [7] (in blue) and our CNN analysis for the “blind” part
of the experimental data (in orange). Original KACADE results are obtained for QGJet-II.02
hadronic interaction model, CNN results are for QGJet-II.04 model. Error bars display the statistical
uncertainties, solid bands represent the “basic” systematic uncertainties, hatched bands show the
estimation of theoretical uncertainties related to post-LHC hadronic models. The latter is not
computed for original KACADE results.
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estimation of the unfolding bias uncertainty for the EPO-LHC hadronic model. In any
case, the most pronounced discrepancy between the original KACADE and the CNN results
is the excess of the p component at low and intermediate energies in the CNN analysis.
We should stress, that this discrepancy is seen in all the hadronic interaction models we
consider (including the same model QGJet-II.02, tested in our ref. [22]), rendering dicult
its explanation by the dierence in the models.

Fits for the spectra of individual mass components. We are searching for breaks in
the obtained individual spectra. The spectra are tted using a simple power law (PL):

dJ◁dE = J0 · Eγ1 , (4.1)

where J0 is a normalization factor and γ1 is a spectral index, and a broken power law (BPL):

dJ◁dE = J0




(E◁Ebr)γ1 , if E < Ebr

(E◁Ebr)γ2 , otherwise,
(4.2)

where Ebr is the energy of the break and {γ1, γ2} are the spectral indices before and after
the break. The χ2 t calculations are performed with the iminuit [38, 39] package. The
signicance of the break is estimated by comparing PL and BPL ts, considering both
statistical and “basic” systematic uncertainties summed in quadrature. Figure 4 shows the
mass component spectra that have a statistically signicant deviation from the PL. The
numerical results of the ts are also shown in this gure. In the p spectrum, the use of
the BPL reduces χ2 by 30.9 at the expense of 2 additional degrees of freedom (d.o.f.), this
results in a p-value of 1▷96 · 10−7 (5▷2σ, two-sided). In the case of the He spectrum the
similar value of ∆χ2 is 18.2 and the resulting p-value is 1▷07 · 10−4 (3▷9σ). Finally, for Fe
BPL reduces χ2 by 8.2 and the p-value is 1▷62 · 10−2 (2▷4σ). As one can see, the breaks for
p and He are knee-like, while for Fe the spectrum exhibits a hardening. Other individual
mass component (C, Si) spectra show no signicant deviations from the PL within the
energy range considered. The values of PL spectral indices are γ1 = −2▷71 ± 0▷04 with
χ2◁d▷o▷f▷ = 0▷42 and γ1 = −2▷67± 0▷05 with χ2◁d▷o▷f▷ = 0▷41 for C and Si respectively. The
PL t for all-particle spectrum yields γ1 = −2▷95± 0▷03 with χ2◁d▷o▷f▷ = 0▷43. When tted
with BPL using the same method (including basic systematic uncertainties), the all-particle
spectrum exhibits a knee at around 3PeV but its signicance with respect to the PL t is
low, similar to the original KACADE result [5].

Comparison with the results of other experiments. We also compare our CNN mass
component spectra with the IceTop results [13] in gure 5. Note that the IceTop results are
obtained using the ibyll 2.1 hadronic interaction model [40], while the theoretical uncertainty
associated with a dierence between hadronic models is taken into account in a dierent way
than ours. Therefore, we do not show the theoretical uncertainty of the IceTop results in this
comparison. They also consider four dierent mass components: p, He, O, and Fe, instead
of the ve components considered in our analysis. Therefore, the comparison is not ideal,
however, one can see a general agreement between these results within the uncertainties.
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(a) (b)

(c)

Figure 4. Individual spectra for (a) protons, (b) helium, and (c) iron tted with PL (see eq. (4.1))
and BPL (see eq. (4.2)), represented by the blue dashed line and black solid line, respectively. Error
bars display the statistical uncertainties, while bands represent the “basic” systematic uncertainties.
Fit qualities and results are depicted in the legends of the corresponding gures.

Finally, the comparison of the results from our CNN method, IceTop [13], TALE [14] and
the recent result of LHAAO [15] in terms of ⟨lnA⟩ is shown in gure 6. In our method ⟨lnA⟩
is calculated as described in section 3. Our result is based on the QGJet-II.04 hadronic
interaction model and takes into account the theoretical uncertainty related to the dierence
between hadronic models.

We should note that the results based on the QGJet-II.04 hadronic interaction model
are in the middle of the theoretical uncertainty band covered also by the EPO-LHC and
ibyll 2.3c models. The EPO-LHC model predicts a lighter composition, while ibyll 2.3c
is predicting a heavier one. It is interesting to notice, that the result for each hadronic model
tends towards the results of another experiment that uses the same model or at least a model
from the same family. Namely, the top edge of our theoretical uncertainties is closer to
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Figure 5. Comparison of the mass component spectra of IceTop [13] (in brown) and our CNN spectra
for the “blind” part of the experimental data (in orange). IceTop results are obtained for ibyll 2.1
hadronic interaction model, CNN results are for the QGJet-II.04 model. Error bars display the
statistical uncertainties, solid bands represent the “basic” systematic uncertainties, hatched bands
show the estimation of theoretical uncertainties related to hadronic models. The latter is not computed
for IceTop results.

the results of IceTop that are based on ibyll 2.1 model, while our bottom edge — to the
TALE results that are based on EPO-LHC model.4 This indicates that at least a part of
the discrepancy between the results of the dierent experiments can be explained by the
dierence in the hadronic interaction models they use.

LHAAO experiment provides the results of its analysis [15] separately for each hadronic
interaction model: QGJet-II.04, EPO-LHC, and ibyll 2.3d [41]. We compare the results
of LHAAO with our results directly, including the theoretical uncertainty due to hadronic
models inherent to each result. One can see that the results exhibit good agreement within the
theoretical uncertainties, while the uncertainty itself is lower in the LHAAO measurement.
This level of agreement looks satisfactory, given the dierences between the experiments.

The numerical tables of our results are presented in appendix A.

4We do not show the estimates of the theoretical uncertainty for these two experiments because they were
performed with a dierent approach than ours and are therefore dicult to compare with our estimate.
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Figure 6. Comparison of the mean logarithmic mass (⟨lnA⟩) of cosmic-ray ux for dierent experi-
ments. Error bars display the statistical uncertainties, solid bands represent the “basic” systematic
uncertainties, hatched bands show the estimation of theoretical uncertainties related to hadronic
models. Our CNN analysis for the “blind” part of the experimental data shown in orange, based on
QGJet-II.04. Top panel: comparison with IceTop [13] (in brown) and TALE [14] (in green). IceTop
results are obtained for ibyll 2.1 model, TALE results are for EPO-LHC model. Bottom panel:
comparison with LHAAO [15] (in purple) , that is using QGJet-II.04 model for basic systematic
uncertainties. Theoretical uncertainties are not computed for IceTop and TALE results. For LHAAO
they are covering QGJet-II.04, EPO-LHC and ibyll 2.3d models; for this work: QGJet-II.04,
EPO-LHC and ibyll 2.3c models.
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5 Discussion and conclusion

In this research we have presented the cosmic-ray mass component spectra reconstructed with
the specic convolutional neural network method using the KACADE experiment archival
data. We have performed the full unfolding analysis and computed all uncertainties aecting
the reconstruction and unfolding procedures. Also, we have estimated the theoretical uncer-
tainty arising due to dierences between post-LHC hadronic interaction models: QGJet-II.04,
EPO-LHC and ibyll 2.3c. We compared our mass component spectra with the original
KACADE results [7] and with IceTop results [13]. Our all-particle spectrum is consistent
with the original KACADE one. However, the observed proton ux is higher than that of the
original KACADE in almost all energy range studied, up to a factor of ∼ 10 at E = 10PeV,
in terms of dierential ux. At the same time, the individual mass components spectra are
mostly in agreement with those of IceTop. We also converted our results to a form of ⟨lnA⟩
and compared them with those obtained by IceTop [13], TALE [14], and LHAAO [15]. Our
CNN results are generally in agreement with the three mentioned experiments if we take
into account the theoretical uncertainties related to the dierence between the hadronic
interaction models. The “basic” systematic uncertainties of our results are smaller than those
of IceTop and TALE results, and comparable to those of LHAAO results, over the most
part of the energy range studied. Finally, we found that the theoretical uncertainty is the
dominant one in our analysis. However, it is comparable to the uncertainties of the IceTop
and TALE results, that do not take into account the dierence between the hadronic models.

In the case of the “basic” uncertainties, we have estimated that the signicant contribu-
tions come from the energy resolution of the dierent MC mixtures and from the bias of the
sequential energy and particle type unfoldings. This opens up the possibility of reducing the
“basic” uncertainties of the analysis by using a more realistic (in terms of mass components)
and larger Monte Carlo set to accurately account for an energy resolution in dierent mixtures,
and by incorporating the correction for the bias of the sequential unfolding procedure. At the
same time the largest uncertainty of the whole analysis is the theoretical uncertainty related
to the dierence between the hadronic interaction models. This one can only be reduced by
further understanding of the EA physics and respective improvement of hadronic models.

We also performed ts of the individual components spectra with power-law and broken
power-law functions to identify possible spectral features. We have found that the spectra of
the proton and helium components show knee-like features at energies around 4.4PeV and
11PeV, respectively. However, the carbon and silicon components do not show any signs of
spectral breaks. While the spectrum of the iron component shows a hint (2▷4σ) of the break at
∼ 4▷5PeV with a spectrum hardening above this energy. The knee-like feature in protons was
seen by KACADE and TALE experiments [5, 7, 14] and a feature in helium was also seen
in the original KACADE analysis [5, 7], though at a somewhat lower energy. In the present
study we have shown, for the rst time, that these features have high statistical signicance;
we also computed the respective spectral indices. The positions of both features (within their
uncertainties) are consistent with their rigidity dependent origin. This conrms the theory
that the knee in the all-particle energy spectrum appears due to the respective knee in the
proton spectrum. Although not very signicant, the hardening in the iron spectrum at this
energy was never seen before. It is remarkable that the energy of this break corresponds to
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that of the break in the proton spectrum at 166TeV recently observed by the GRAPE-3
experiment [42], if one would assume the rigidity dependent origin of both brakes. We think
that this nding deserves a further study.
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A Table of results

The values of ⟨lnA⟩ for our CNN analysis are shown in gure 6 are represented in table 1.
The individual mass component spectra and the all-particle spectrum shown in gure 3 are
represented in table 2 and table 3, respectively.
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Energy bin,
log10 (E◁GeV)

⟨lnA⟩ ± tat ±Bas. sys − Th. unc +

6▷15− 6▷2425 1.114 0.008 0.117 0.385 0.526
6▷2425− 6▷335 1.007 0.013 0.138 0.336 0.538
6▷335− 6▷4275 0.957 0.011 0.094 0.317 0.448
6▷4275− 6▷52 0.914 0.011 0.086 0.311 0.443
6▷52− 6▷6125 0.980 0.013 0.088 0.374 0.384
6▷6125− 6▷705 0.955 0.015 0.087 0.357 0.388
6▷705− 6▷7975 0.973 0.017 0.092 0.360 0.408
6▷7975− 6▷89 1.058 0.020 0.120 0.378 0.450
6▷89− 6▷9825 1.165 0.023 0.164 0.409 0.507
6▷9825− 7▷075 1.303 0.027 0.196 0.425 0.547
7▷075− 7▷1675 1.638 0.025 0.249 0.587 0.360
7▷1675− 7▷26 1.799 0.034 0.274 0.718 0.416
7▷26− 7▷3525 1.967 0.038 0.285 0.656 0.448
7▷3525− 7▷445 2.060 0.064 0.326 0.757 0.517
7▷445− 7▷5375 2.200 0.064 0.338 0.606 0.547
7▷5375− 7▷63 2.359 0.082 0.393 0.760 0.639
7▷63− 7▷7225 2.482 0.131 0.435 0.828 0.718
7▷7225− 7▷815 2.492 0.155 0.374 0.787 0.637
7▷815− 7▷9075 2.502 0.148 0.366 0.639 0.619
7▷9075− 8▷0 2.549 0.174 0.360 0.741 0.613

Table 1. ⟨lnA⟩ values for our CNN analysis. “± tat” means statistical uncertainties. “±Bas. sys”
means the “basic” systematic uncertainties for QGJet-II.04 model. “Th. unc.” means the theoretical
uncertainty band, “+” is the upper uncertainty and “−” is the lower uncertainty. The theoretical
uncertainty covers results based on QGJet-II.04, EPO-LHC, and ibyll 2.3c.
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Energy bin,
log10 (E◁GeV)

p ux He ux C ux

6▷15− 6▷2425 (3▷105± 0▷010± 0▷528)× 10−13 (1▷037± 0▷012± 0▷253)× 10−13 (6▷513± 0▷064± 1▷544)× 10−14

6▷2425− 6▷335 (2▷152± 0▷007± 0▷348)× 10−13 (3▷724± 0▷099± 2▷056)× 10−14 (6▷701± 0▷128± 2▷424)× 10−14

6▷335− 6▷4275 (1▷336± 0▷005± 0▷214)× 10−13 (2▷898± 0▷060± 0▷742)× 10−14 (2▷691± 0▷050± 0▷607)× 10−14

6▷4275− 6▷52 (7▷307± 0▷034± 1▷164)× 10−14 (1▷819± 0▷038± 0▷405)× 10−14 (1▷293± 0▷026± 0▷270)× 10−14

6▷52− 6▷6125 (3▷610± 0▷019± 0▷565)× 10−14 (8▷963± 0▷211± 1▷981)× 10−15 (7▷357± 0▷172± 1▷493)× 10−15

6▷6125− 6▷705 (2▷082± 0▷013± 0▷329)× 10−14 (5▷234± 0▷138± 1▷079)× 10−15 (3▷814± 0▷103± 0▷735)× 10−15

6▷705− 6▷7975 (1▷093± 0▷009± 0▷174)× 10−14 (3▷064± 0▷092± 0▷591)× 10−15 (1▷930± 0▷063± 0▷375)× 10−15

6▷7975− 6▷89 (5▷204± 0▷053± 0▷878)× 10−15 (2▷017± 0▷058± 0▷378)× 10−15 (1▷125± 0▷036± 0▷218)× 10−15

6▷89− 6▷9825 (2▷558± 0▷034± 0▷484)× 10−15 (1▷264± 0▷038± 0▷250)× 10−15 (6▷811± 0▷224± 1▷399)× 10−16

6▷9825− 7▷075 (1▷207± 0▷020± 0▷256)× 10−15 (7▷069± 0▷221± 1▷438)× 10−16 (4▷218± 0▷135± 0▷869)× 10−16

7▷075− 7▷1675 (3▷916± 0▷080± 0▷920)× 10−16 (3▷308± 0▷077± 0▷693)× 10−16 (2▷580± 0▷066± 0▷568)× 10−16

7▷1675− 7▷26 (1▷837± 0▷050± 0▷454)× 10−16 (1▷633± 0▷048± 0▷324)× 10−16 (1▷437± 0▷045± 0▷319)× 10−16

7▷26− 7▷3525 (9▷385± 0▷302± 2▷289)× 10−17 (9▷485± 0▷281± 1▷789)× 10−17 (8▷669± 0▷288± 1▷881)× 10−17

7▷3525− 7▷445 (5▷316± 0▷257± 1▷430)× 10−17 (4▷490± 0▷276± 1▷085)× 10−17 (5▷732± 0▷287± 1▷386)× 10−17

7▷445− 7▷5375 (2▷181± 0▷118± 0▷607)× 10−17 (2▷152± 0▷112± 0▷478)× 10−17 (2▷570± 0▷130± 0▷583)× 10−17

7▷5375− 7▷63 (7▷364± 0▷546± 2▷333)× 10−18 (8▷341± 0▷546± 2▷179)× 10−18 (1▷138± 0▷069± 0▷281)× 10−17

7▷63− 7▷7225 (4▷285± 0▷458± 1▷510)× 10−18 (3▷475± 0▷445± 1▷281)× 10−18 (7▷481± 0▷650± 2▷013)× 10−18

7▷7225− 7▷815 (3▷000± 0▷356± 0▷925)× 10−18 (2▷112± 0▷317± 0▷644)× 10−18 (3▷607± 0▷420± 0▷939)× 10−18

7▷815− 7▷9075 (1▷312± 0▷178± 0▷434)× 10−18 (1▷364± 0▷161± 0▷410)× 10−18 (2▷271± 0▷237± 0▷585)× 10−18

7▷9075− 8▷0 (6▷995± 1▷096± 2▷247)× 10−19 (6▷873± 0▷926± 1▷927)× 10−19 (9▷971± 1▷282± 2▷534)× 10−19

Si ux Fe ux
6▷15− 6▷2425 (6▷735± 0▷089± 1▷654)× 10−14 (2▷711± 0▷059± 1▷007)× 10−14

6▷2425− 6▷335 (2▷497± 0▷078± 1▷592)× 10−14 (1▷503± 0▷043± 0▷712)× 10−14

6▷335− 6▷4275 (2▷276± 0▷047± 0▷481)× 10−14 (6▷606± 0▷217± 2▷079)× 10−15

6▷4275− 6▷52 (1▷091± 0▷027± 0▷221)× 10−14 (3▷711± 0▷128± 1▷089)× 10−15

6▷52− 6▷6125 (6▷738± 0▷157± 1▷234)× 10−15 (1▷573± 0▷073± 0▷408)× 10−15

6▷6125− 6▷705 (3▷893± 0▷104± 0▷696)× 10−15 (8▷312± 0▷468± 2▷201)× 10−16

6▷705− 6▷7975 (2▷244± 0▷068± 0▷409)× 10−15 (3▷797± 0▷287± 1▷212)× 10−16

6▷7975− 6▷89 (1▷028± 0▷039± 0▷207)× 10−15 (3▷045± 0▷192± 0▷869)× 10−16

6▷89− 6▷9825 (5▷513± 0▷241± 1▷232)× 10−16 (2▷124± 0▷131± 0▷641)× 10−16

6▷9825− 7▷075 (3▷097± 0▷142± 0▷695)× 10−16 (1▷418± 0▷086± 0▷421)× 10−16

7▷075− 7▷1675 (1▷560± 0▷053± 0▷346)× 10−16 (1▷015± 0▷042± 0▷285)× 10−16

7▷1675− 7▷26 (1▷037± 0▷040± 0▷240)× 10−16 (6▷321± 0▷299± 1▷791)× 10−17

7▷26− 7▷3525 (6▷769± 0▷252± 1▷533)× 10−17 (4▷984± 0▷225± 1▷350)× 10−17

7▷3525− 7▷445 (4▷381± 0▷283± 1▷124)× 10−17 (3▷040± 0▷196± 0▷897)× 10−17

7▷445− 7▷5375 (2▷277± 0▷126± 0▷549)× 10−17 (1▷777± 0▷109± 0▷514)× 10−17

7▷5375− 7▷63 (1▷077± 0▷069± 0▷291)× 10−17 (8▷163± 0▷585± 2▷629)× 10−18

7▷63− 7▷7225 (7▷968± 0▷754± 2▷301)× 10−18 (4▷974± 0▷514± 1▷675)× 10−18

7▷7225− 7▷815 (5▷482± 0▷570± 1▷464)× 10−18 (3▷423± 0▷398± 0▷986)× 10−18

7▷815− 7▷9075 (2▷426± 0▷249± 0▷633)× 10−18 (1▷858± 0▷219± 0▷540)× 10−18

7▷9075− 8▷0 (1▷300± 0▷149± 0▷322)× 10−18 (1▷104± 0▷143± 0▷300)× 10−18

Table 2. Individual mass component dierential ux (dJ◁dE) in form: dJ◁dE ± statistical uncertainty
± “basic” systematic uncertainty (based on QGJet-II.04 model),


m−2sr−1s−1GeV−1.
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Energy bin,
log10 (E◁GeV) dJ◁dE ± tat ±Bas. sys − Th. unc +

6▷15− 6▷2425 5.738 0.012 0.931 1.384 1.073 ×10−13

6▷2425− 6▷335 3.594 0.009 0.549 0.734 0.869 ×10−13

6▷335− 6▷4275 2.189 0.006 0.342 0.555 0.404 ×10−13

6▷4275− 6▷52 1.188 0.004 0.185 0.369 0.185 ×10−13

6▷52− 6▷6125 6.073 0.029 0.929 1.476 1.287 ×10−14

6▷6125− 6▷705 3.459 0.019 0.535 1.239 0.535 ×10−14

6▷705− 6▷7975 1.855 0.013 0.286 0.550 0.307 ×10−14

6▷7975− 6▷89 9.678 0.085 1.510 2.922 1.510 ×10−15

6▷89− 6▷9825 5.267 0.057 0.834 1.512 0.834 ×10−15

6▷9825− 7▷075 2.787 0.039 0.459 0.972 0.459 ×10−15

7▷075− 7▷1675 1.238 0.024 0.209 0.397 0.209 ×10−15

7▷1675− 7▷26 6.576 0.152 1.132 2.186 1.145 ×10−16

7▷26− 7▷3525 3.929 0.101 0.684 1.275 1.175 ×10−16

7▷3525− 7▷445 2.296 0.068 0.409 0.913 0.409 ×10−16

7▷445− 7▷5375 1.096 0.041 0.201 0.491 0.230 ×10−16

7▷5375− 7▷63 4.602 0.265 0.978 0.978 1.300 ×10−17

7▷63− 7▷7225 2.818 0.199 0.628 1.016 1.337 ×10−17

7▷7225− 7▷815 1.762 0.129 0.371 0.960 0.371 ×10−17

7▷815− 7▷9075 9.231 0.891 1.991 2.557 1.991 ×10−18

7▷9075− 8▷0 4.788 0.475 1.001 3.306 1.001 ×10−18

Table 3. All-particle dierential ux (dJ◁dE) for our analysis, in

m−2sr−1s−1GeV−1. “± tat”

means statistical uncertainty of the ux, “±Bas.sys” — “basic” systematic uncertainties based on
QGJet-II.04 model, “Th. unc” — lower and upper theoretical uncertainties that cover results based
on QGJet-II.04, EPO-LHC and ibyll 2.3c.
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